Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Mathematics ; 9(24):3282, 2021.
Article in English | MDPI | ID: covidwho-1580593

ABSTRACT

A new method in decision-making of timing of tracheostomy in COVID-19 patients is developed and discussed in this paper. Tracheostomy is performed in critically ill coronavirus disease (COVID-19) patients. The timing of tracheostomy is important for anticipated prolonged ventilatory wean when levels of respiratory support were favorable. The analysis of this timing has been implemented based on classification method. One of principal conditions for the developed classifiers in decision-making of timing of tracheostomy in COVID-19 patients was a good interpretation of result. Therefore, the proposed classifiers have been developed as decision tree based because these classifiers have very good interpretability of result. The possible uncertainty of initial data has been considered by the application of fuzzy classifiers. Two fuzzy classifiers as Fuzzy Decision Tree (FDT) and Fuzzy Random Forest (FRF) have been developed for the decision-making in tracheostomy timing. The evaluation of proposed classifiers and their comparison with other show the efficiency of the proposed classifiers. FDT has best characteristics in comparison with other classifiers.

4.
Eur Arch Otorhinolaryngol ; 278(6): 2107-2114, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1014131

ABSTRACT

PURPOSE: The COVID-19 pandemic placed an unprecedented demand on critical care services for the provision of mechanical ventilation. Tracheostomy formation facilitates liberation from mechanical ventilation with advantages for both the patient and wider critical care resource, and can be performed using both percutaneous dilatational and surgical techniques. We compared outcomes in those patients undergoing percutaneous dilatational tracheostomy to those undergoing surgical tracheostomy and make recommendations for provision of tracheostomy services in any future surge. METHODS: Multicentre multidisciplinary retrospective observational cohort study including 201 patients with COVID-19 pneumonitis admitted to an ICU in one of five NHS Trusts within the South London Adult Critical Care Network who required mechanical ventilation and subsequent tracheostomy. RESULTS: Percutaneous dilatational tracheostomy was performed in 124 (62%) of patients, and surgical tracheostomy in 77 (38%) of patients. There was no difference between percutaneous dilatational tracheostomy and surgical tracheostomy in either the rate of peri-operative complications (16.9 vs. 22.1%, p = 0.46), median [IQR(range)] time to decannulation [19.0 (15.0-30.2 (5.0-65.0)] vs. 21.0 [15.5-36.0 (5.0-70.0) days] or mortality (13.7% vs. 15.6%, p = 0.84). Of the 172 patients that were alive at follow-up, two remained ventilated and 163 were decannulated. CONCLUSION: In patients with COVID-19 pneumonitis that require tracheostomy to facilitate weaning from mechanical ventilation, there was no difference in outcomes between those patients that had percutaneous dilatational tracheostomy compared with those that had surgical tracheostomy. Planning for future surges in COVID-19-related critical care demands should utilise all available resource and expertise.


Subject(s)
COVID-19 , Tracheostomy , Adult , Humans , London , Pandemics , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
5.
Crit Care Explor ; 2(11): e0279, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-939582

ABSTRACT

OBJECTIVES: To propose the optimal timing to consider tracheostomy insertion for weaning of mechanically ventilated patients recovering from coronavirus disease 2019 pneumonia. We investigated the relationship between duration of mechanical ventilation prior to tracheostomy insertion and in-hospital mortality. In addition, we present a machine learning approach to facilitate decision-making. DESIGN: Prospective cohort study. SETTING: Guy's & St Thomas' Hospital, London, United Kingdom. PATIENTS: Consecutive patients admitted with acute respiratory failure secondary to coronavirus disease 2019 requiring mechanical ventilation between March 3, 2020, and May 5, 2020. INTERVENTIONS: Baseline characteristics and temporal trends in markers of disease severity were prospectively recorded. Tracheostomy was performed for anticipated prolonged ventilatory wean when levels of respiratory support were favorable. Decision tree was constructed using C4.5 algorithm, and its classification performance has been evaluated by a leave-one-out cross-validation technique. MEASUREMENTS AND MAIN RESULTS: One-hundred seventy-six patients required mechanical ventilation for acute respiratory failure, of which 87 patients (49.4%) underwent tracheostomy. We identified that optimal timing for tracheostomy insertion is between day 13 and day 17. Presence of fibrosis on CT scan (odds ratio, 13.26; 95% CI [3.61-48.91]; p ≤ 0.0001) and Pao2:Fio2 ratio (odds ratio, 0.98; 95% CI [0.95-0.99]; p = 0.008) were independently associated with tracheostomy insertion. Cox multiple regression analysis showed that chronic obstructive pulmonary disease (hazard ratio, 6.56; 95% CI [1.04-41.59]; p = 0.046), ischemic heart disease (hazard ratio, 4.62; 95% CI [1.19-17.87]; p = 0.027), positive end-expiratory pressure (hazard ratio, 1.26; 95% CI [1.02-1.57]; p = 0.034), Pao2:Fio2 ratio (hazard ratio, 0.98; 95% CI [0.97-0.99]; p = 0.003), and C-reactive protein (hazard ratio, 1.01; 95% CI [1-1.01]; p = 0.005) were independent late predictors of in-hospital mortality. CONCLUSIONS: We propose that the optimal window for consideration of tracheostomy for ventilatory weaning is between day 13 and 17. Late predictors of mortality may serve as adverse factors when considering tracheostomy, and our decision tree provides a degree of decision support for clinicians.

6.
Eur Arch Otorhinolaryngol ; 278(5): 1595-1604, 2021 May.
Article in English | MEDLINE | ID: covidwho-692740

ABSTRACT

PURPOSE: COVID-19 patients requiring mechanical ventilation can overwhelm existing bed capacity. We aimed to better understand the factors that influence the trajectory of tracheostomy care in this population to facilitate capacity planning and improve outcomes. METHODS: We conducted an observational cohort study of patients in a high-volume centre in the worst-affected region of the UK including all patients that underwent tracheostomy for COVID-19 pneumonitis ventilatory wean from 1st March 2020 to 10th May 2020. The primary outcome was time from insertion to decannulation. The analysis utilised Cox regression to account for patients that are still progressing through their tracheostomy pathway. RESULTS: At the point of analysis, a median 21 days (IQR 15-28) post-tracheostomy and 39 days (IQR 32-45) post-intubation, 35/69 (57.4%) patients had been decannulated a median of 17 days (IQR 12-20.5) post-insertion. The overall median age was 55 (IQR 48-61) with a male-to-female ratio of 2:1. In Cox regression analysis, FiO2 at tracheostomy ≥ 0.4 (HR 1.80; 95% CI 0.89-3.60; p = 0.048) and last pre-tracheostomy peak cough flow (HR 2.27; 95% CI 1.78-4.45; p = 0.001) were independent variables associated with prolonged time to decannulation. CONCLUSION: Higher FiO2 at tracheostomy and higher pre-tracheostomy peak cough flow are associated with increased delay in COVID-19 tracheostomy patient decannulation. These finding comprise the most comprehensive report of COVID-19 tracheostomy decannulation to date and will assist service planning for future peaks of this pandemic.


Subject(s)
COVID-19 , Tracheostomy , Device Removal , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2
7.
Eur Arch Otorhinolaryngol ; 278(2): 313-321, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-600903

ABSTRACT

PURPOSE: Traditional critical care dogma regarding the benefits of early tracheostomy during invasive ventilation has had to be revisited due to the risk of COVID-19 to patients and healthcare staff. Standard practises that have evolved to minimise the risks associated with tracheostomy must be comprehensively reviewed in light of the numerous potential episodes for aerosol generating procedures. We meet the urgent need for safe practise standards by presenting the experience of two major London teaching hospitals, and synthesise our findings into an evidence-based guideline for multidisciplinary care of the tracheostomy patient. METHODS: This is a narrative review presenting the extensive experience of over 120 patients with tracheostomy, with a pragmatic analysis of currently available evidence for safe tracheostomy care in COVID-19 patients. RESULTS: Tracheostomy care involves many potentially aerosol generating procedures which may pose a risk of viral transmission to staff and patients. We make a series of recommendations to ameliorate this risk through infection control strategies, equipment modification, and individualised decannulation protocols. In addition, we discuss the multidisciplinary collaboration that is absolutely fundamental to safe and effective practise. CONCLUSION: COVID-19 requires a radical rethink of many tenets of tracheostomy care, and controversy continues to exist regarding the optimal techniques to minimise risk to patients and healthcare workers. Safe practise requires a coordinated multidisciplinary team approach to infection control, weaning and decannulation, with integrated processes for continuous prospective data collection and audit.


Subject(s)
COVID-19 , Tracheostomy , Humans , London , Pandemics , Practice Guidelines as Topic , Prospective Studies , SARS-CoV-2 , Tracheostomy/adverse effects
8.
J Otolaryngol Head Neck Surg ; 49(1): 26, 2020 May 04.
Article in English | MEDLINE | ID: covidwho-165265

ABSTRACT

BACKGROUND: A rapidly evolving evidence suggests that smell and taste disturbance are common symptoms in COVID-19 infection. As yet there are no reports on duration and recovery rates. We set out to characterise patients reporting new onset smell and taste disturbance during the COVID-19 pandemic and report on early recovery rates. METHODS: Online Survey of patients reporting self-diagnosed new onset smell and taste disturbance during the COVID-19 pandemic, with 1 week follow-up. RESULTS: Three hundred eighty-two patents completed bot an initial and follow-up survey. 86.4% reported complete anosmia and a further 11.5% a very severe loss of smell at the time of completing the first survey. At follow-up 1 week later, there is already significant improvement in self-rating of severity of olfactory loss. 80.1% report lower severity scores at follow-up, 17.6% are unchanged and 1.9% are worse. 11.5% already report compete resolution at follow up, while 17.3% report persistent complete loss of smell, with reported duration being 1 to over 4 weeks. This is reflected in the overall cumulative improvement rate of 79% patients overall in the interval between surveys. CONCLUSIONS: A review of the growing evidence base supports the likelihood that out cohort have suffered olfactory loss as part of COVID-19 infection. While early recovery rates are encouraging, long term rates will need to be further investigated and there may be an increase in patients with persistent post-viral loss as a result of the pandemic. We further call for loss of sense of smell to be formerly recognised as a marker of COVID-19 infection.


Subject(s)
Coronavirus Infections/complications , Olfaction Disorders/etiology , Pneumonia, Viral/complications , Adolescent , Adult , Aged , Betacoronavirus , COVID-19 , Cohort Studies , Coronavirus Infections/epidemiology , Female , Humans , Male , Middle Aged , Olfaction Disorders/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Smell , Surveys and Questionnaires , Young Adult
9.
Eur Arch Otorhinolaryngol ; 277(8): 2173-2184, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-88519

ABSTRACT

PURPOSE: The COVID-19 pandemic is placing unprecedented demand upon critical care services for invasive mechanical ventilation. There is current uncertainty regarding the role of tracheostomy for weaning ventilated patients with COVID-19 pneumonia. This is due to a number of factors including prognosis, optimal healthcare resource utilisation, and safety of healthcare workers when performing such a high-risk aerosol-generating procedure. METHODS: Literature review and proposed practical guideline based on the experience of a tertiary healthcare institution with 195 critical care admissions for COVID-19 up until 4th April 2020. RESULTS: A synthesis of the current international literature and reported experience is presented with respect to prognosis, viral load and staff safety, thus leading to a pragmatic recommendation that tracheostomy is not performed until at least 14 days after endotracheal intubation in COVID-19 patients. Practical steps to minimise aerosol generation in percutaneous tracheostomy are outlined and we describe the process and framework for setting up a dedicated tracheostomy team. CONCLUSION: In selected COVID-19 patients, there is a role for tracheostomy to aid in weaning and optimise healthcare resource utilisation. Both percutaneous and open techniques can be performed safely with careful modifications to technique and appropriate enhanced personal protective equipment. ORL-HNS surgeons can play a valuable role in forming tracheostomy teams to support critical care teams during this global pandemic.


Subject(s)
Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intubation, Intratracheal , Practice Guidelines as Topic , Respiration, Artificial , Tracheostomy/methods , Aerosols , Betacoronavirus , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Intubation, Intratracheal/standards , Pandemics/prevention & control , Personal Protective Equipment , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Respiration, Artificial/standards , SARS-CoV-2 , Tracheostomy/standards
10.
Int Forum Allergy Rhinol ; 10(7): 839-847, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-46011

ABSTRACT

BACKGROUND: Initial reports describing coronavirus 2019 (COVID-19) were dominated by the presence of cough, breathlessness, and fever; anecdotal reports suggested anosmia may also be a manifestation. We used Google Trends (GT) to investigate whether there was a surge in individuals searching for information related to smell loss during the COVID-19 epidemic in Italy, Spain, the United Kingdom, the United States, Germany, France, Iran, and The Netherlands. METHODS: GT was used to explore internet activity related to loss of smell in the 8 aforementioned countries. Spearman rank analysis was performed to correlate loss-of-smell-relative search volumes (RSVs), with the increases of daily confirmed cases of COVID-19 and deaths attributed to disease. As a control event, we also performed analysis of smell-related searches during the last UK influenza epidemic of 2009. RESULTS: In all 8 countries, we observed strong correlations between daily RSVs related to loss of smell, increases of daily COVID-19+ cases and deaths ranging from 0.633 to 0.952. All correlations were statistically significant (p < 0.05). CONCLUSION: There is a strong correlation between the frequency of searches for smell-related information and the onset of COVID-19 infection in Italy, Spain, UK, USA, Germany, France, Iran, and The Netherlands. We hypothesize this may relate to a previously underrecognized symptom.


Subject(s)
Coronavirus Infections/epidemiology , Olfaction Disorders/epidemiology , Pneumonia, Viral/epidemiology , Search Engine/trends , Betacoronavirus , COVID-19 , Europe/epidemiology , Humans , Iran/epidemiology , Pandemics , Population Surveillance , SARS-CoV-2 , Search Engine/statistics & numerical data , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL